A linear k-fold Cheeger inequality

نویسندگان

  • Franklin Kenter
  • Mary Radcliffe
چکیده

Abstract. Given an undirected graph G, the classical Cheeger constant, hG, measures the optimal partition of the vertices into 2 parts with relatively few edges between them based upon the sizes of the parts. The wellknown Cheeger’s inequality states that 2λ1 ≤ hG ≤ √ 2λ1 where λ1 is the minimum nontrivial eigenvalue of the normalized Laplacian matrix. Recent work has generalized the concept of the Cheeger constant when partitioning the vertices of a graph into k > 2 parts. While there are several approaches, recent results have shown these higher-order Cheeger constants to be tightly controlled by λk−1, the (k−1) nontrivial eigenvalue, to within a quadratic factor. We present a new higher-order Cheeger inequality with several new perspectives. First, we use an alternative higher-order Cheeger constant which considers an “average case” approach. We show this measure is related to the average of the first k − 1 nontrivial eigenvalues of the normalized Laplacian matrix. Further, using recent techniques, our results provide linear inequalities using the ∞-norms of the corresponding eigenvectors. Consequently, unlike previous results, this result is relevant even when λk−1 → 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Cheeger Inequality using Eigenvector Norms

The Cheeger constant, hG, is a measure of expansion within a graph. The classical Cheeger Inequality states: λ1/2 ≤ hG ≤ √ 2λ1 where λ1 is the first nontrivial eigenvalue of the normalized Laplacian matrix. Hence, hG is tightly controlled by λ1 to within a quadratic factor. We give an alternative Cheeger Inequality where we consider the∞-norm of the corresponding eigenvector in addition to λ1. ...

متن کامل

Cheeger Inequalities for Submodular Transformations

The Cheeger inequality for undirected graphs, which relates the conductance of an undirected graph and the second smallest eigenvalue of its normalized Laplacian, is a cornerstone of spectral graph theory. The Cheeger inequality has been extended to directed graphs and hypergraphs using normalized Laplacians for those, that are no longer linear but piecewise linear transformations. In this pape...

متن کامل

A Cheeger-Type Inequality on Simplicial Complexes

In this paper, we consider a variation on Cheeger numbers related to the coboundary expanders recently defined by Dotterer and Kahle. A Cheeger-type inequality is proved, which is similar to a result on graphs due to Fan Chung. This inequality is then used to study the relationship between coboundary expanders on simplicial complexes and their corresponding eigenvalues, complementing and extend...

متن کامل

Higher Dimensional Discrete Cheeger Inequalities

4 For graphs there exists a strong connection between spectral and combinatorial 5 expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the 6 lower bound of which states that λ(G) ≤ h(G), where λ(G) is the second smallest 7 eigenvalue of the Laplacian of a graph G and h(G) is the Cheeger constant measuring 8 the edge expansion of G. We are interested in generalizat...

متن کامل

Four Cheeger - type Inequalities for Graph Partitioning Algorithms ∗

We will give proofs to four isoperimetric inequalities which are variations of the original Cheeger inequality relating eigenvalues of a graph with the Cheeger constant. The first is a simplified proof of the classical Cheeger inequality using eigenvectors. The second is based on a rapid mixing result for random walks by Lovász and Simonovits. The third uses PageRank, a quantitative ranking of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.01741  شماره 

صفحات  -

تاریخ انتشار 2015